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Necessary conditions for the weak convergence of Fourier series in orthogonal
polynomials are given. It is shown that the partial sum operator associated with the
Jacobi series is of restricted weak type, but not of weak type, for the endpoints of
the mean convergence interval. © 1990 Academic Press, Inc.

INTRODUCTION

Let drx be a finite positive Borel measure on an· interval Ie IR such that
supp(drx) is an infinite set and let Pn(drx) denote the corresponding
orthonormal polynomials. For f EL I (drx), SJ stands for the nth partial
sum of the orthogonal Fourier expansion offin {Pn(drx)}~=o' that is,

n

Sn(f, x) = L akPk(x),
k~O

The study ofthe convergence of Snf in LP(drx) (p # 2) has been discussed
for several classes of orthogonal polynomials (d. Askey and Wainger [1],
Badkov [2--4J, Muckenhoupt [11-13], Newman and Rudin [16], Pollard
[17-19], and Wing [24]). For instance, in the case of Jacobi polynomials
{p~a,f3)(x)}~=o which are orthogonal in [-1,1] with respect to the weight
w(x) = (1- x)a (1 + x)f3, rx, f3 ~ -1/2, Pollard proved that 11/p -1/21 <
min{1/(4rx + 4), 1/(4f3 + 4)} is a sufficient condition for uniform bounded­
ness IISnfllp,w ~ CJIfll p,w, which is equivalent to convergence in LP(w),
1 < P < 00. Newman and Rudin showed that the previous condition is also
necessary and later Muckenhoupt extended these results to rx, f3 > - 1.
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The aim of this paper is to examine the weak behaviour of the Fourier~

Jacobi expansion, that is, to study if there exists a constant C, independent
of n, y and f, such that

f w(x) dx::s; Cy-Pr If(x)[P w(x) dx, y>O,
ISnCf,x)l>y -I

i.e., if Sn is uniformly bounded from LP(w) into L~(w), 1< P < 00.

By using interpolation [22, Theorem 3.15, p. 197J, the range of p's for
which there exists convergence of Snf in LP(w) is always an interval,
named the mean convergence interval. Moreover, the previous weak
inequality only can be true, besides the mean convergence interval, in its
endpoints. Since for - 1< a, {J::S; - 1/2, the condition Ilip - 1121<
min {1/(4a + 4), 1/(4{J + 4)} is trivial forp E (1, (0), we suppose, by symmetry,
a ~ {J and a > - 1/2. Then the mean convergence interval is 4(a +1)1
(2a+3)<p<4(a+l)/(2a+l). For the Fourier-Legendre expansion
(a = (J = 0) and p = 4 Chanillo [5] proved that the partial sum operator is
not of weak type (4, 4), but is of restricted weak type (4, 4) (and (4/3, 4/3),
by duality), i.e., it is weakly bounded on characteristic functions.

On the other hand, M.He, Nevai, and Totik [1OJ obtained, in a gener:'!.l
way, necessary conditions for the mean convergence of Fourier expansions.

THEOREM (Mate-Nevai-Totik). Let da be such that supp(da) =
[ - 1, 1J, at > 0 almost everywhere, U and V nonnegative Borel measurable
functions such that neither of them vanishes almost everywhere in [- 1, 1]
and V is finite on a set with positive Lebesgue measure. If Sn is uniformly
boundedfrom LP(V(x)P da) into LP(U(x)P da), then

(1) U(x)pEL 1(da), V(x)-qEL1(da), q=pl(p-l)

(ii) f
1

U(x)P a'(x)1- p/2 (l_X2)-p/4 dx< 00

(iii) (1 V(x)-q a'(x)l- q/2 (l-X 2)-q/4 dx< 00.

When da and d{J = U(x)P d; = V(x)P da are generalized Jacobi measures,
these conditions turn out to be sufficient too [2-4].

This paperis organized as follows. In Section 1 we obtain necessary Con­
ditions for weak convergence. These allow us to prove that Sn is not of
weak type (p, p) for p =4(a + 1)/(2a + 3). From these conditions it follows
that (i), (ii), and (iii) are necessary not only for mean convergence but also
for weak convergence. We end this section by giving an example which
shows that they are not sufficient. In Section 2 we prove, by using similar
arguments to [5J, that Sn is not of weak type for p =4(t>: + 1)/(2a + 1).
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Finally, in Section 3, we obtain that the partial sum operator is of
restricted weak type (p, p) for both endpoints of the mean convergence
interval when 0:, f3 ~ - 1/2 and one of them is bigger than - 1/2.

SECTION 1

Assume supp(do:)= [-1,1], 0:'>0 a.e., and let {Pn(x)};;"=o be the
corresponding orthonormal polynomials. C is used to denote positive
constants not necessarily the same in each occurrence and q = p/(p - 1).
For f E L 1(do:), let Snfdenote the nth partial sum of the orthogonal Fourier
expansion offin {Pn(x)};;"=o. We want to find necessary conditions for the
weak convergence of Sn.

LEMMA L Let U and V be weights and let 1 < P < 00. If there exists a
constant C such that for every f E LP( vPdo:) the inequality

IISnfl1 U~,(UPda) ~ C\Ifll LP(VPda)

holds for all integers n ~ 0, then

IIPnl1 U(V-qda)IIPnll LP,JUPda) ~ C.

Proof It follows from (1.1) that

Ilan(f) Pnllu~JuPda) = IISJ- Sn_ till I{(UPda) ~ C\IfIILP(VPda)

Thus,

Therefore, every operator

pnlvP: LP(vPdo:) -+ lR

!-+((1 (Pn/VP)!vPdo:)=an(f)

(1.1 )

(1.2)

is bounded and, by duality, its norm as operator coincides with the norm
as function in U(VPdo:). Thus

IIPn/VPII Lq(VPda) ~ C( /lPn11 u:'(UPda))-1

and (1.2) indeed holds.

In order to prove the main theorem, we will use the following result
established by Mate, Nevai, and Totik [10, Theorem 2].
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LEMMA 2. Let supp(da)=[-l,l], a'>O a.e. in [-1,1J, and
0< P~ 00. There exists a constant C such that if g is a Lebesgue-measurable
function in [- 1, 1], then

In particular, if

lim inf IIPnl1 U(lgjPdx) =0
n~ ao

then g = 0 a.e.

THEOREM 1. Let da, U, and V be as in Lemma 1. If there exists a
constant C such that

holds for all integers n ?: 0 and every f E LP( vPda), then

UP, v-q E L 1(da)

a'(x)-1/2 (l-x2)-1/4 E L':,.(UPa'dx)

a'(x) -1/2 (1 - x 2) -1/4 E U( V-qa'dx).

Proof Taking n = 0 in Lemma 1 we obtain (1.3).
In order to prove (1.4) and (1.5), we use the result

IIfN E llr /_p )1/r
Ilfllu;,(dm)~S~P IINElls ~\p~ Ilfllu;,(dm)'

(1.3)

(1.4 )

where dm is a Borel measure, 0 < r < P <00, l/s = l/r-1/p, and
supremum is taken over all measurable sets E such that 0 < m(E) < 00
Lemma V.2.8, p. 485]. From Lemma 2 and this inequality, it follows that

Ila'(x) -1/2 (l - x 2
) -1/411 LP (lgIPdx) ~ C lim inf II Pnll U (lgIPd,")'

* n~co *

Now, taking lim infn~ ao in (1.2), we obtain

II '( )-1/2 (1 2)-1/411 II '( )-1/2 (1 2)-1/4/ 1 /' CIX X - X Lq(V-qa'dx) a x - x. 1L~(UPa'dx) "" .

As none of these norms can vanish, we get (1.4) and (1.5).

An easy consequence from Theorem 1 is
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COROLLARY 1. If dr.x, U, and V are as in Lemma 1 and if Sn is uniformly
bounded from LP(V(x)P dr.x) into L~(U(xF dr.x) and from U(U(x)~qdr.x)
into L~(V(x)-q dr.x), then we have

(1.6)

rV(x) -q r.x'(X)1- q/2 (1 - x2) -q/4 dx < 00
-1r U(xF r.x'(X)l- p/2 (1- X2)-p/4 dx < 00.
-1

(1.7)

(1.8)

Remark 1. Let Sn denote the nth partial sum of the Fourier-Jacobi
expansion (r.x'(x)=(1-x)"'(1+x)P, r.x,{3~ -1/2,r.x> -1/2) and U(x)=
V(x) = 1. Because of (1.3) and (1.5) in Theorem 1 we obtain the conditions

IA + 11 111p - 1121 < (A + 1)/2, (A + 1)(11p -112) < 1/4,

where A is r.x or {3, the same in each statement. As the latter inequality is
not satisfied for p = 4( r.x + 1)/(2r.x + 3), it implies that Sn is not of weak type
(p, p) for the lower endpoint of the interval of mean convergence. The same
happens with generalized Jacobi polynomials.

Remark 2. The conditions (1.6), (1.7), and (1.8) are the same as (i),
(ii), and (iii) in the Introduction. These are necessary conditions for the
boundedness of Sn from LP(V(x)P dr.x) into LP(U(x)P dr.x) or equivalently
from U(U(x)-q dr.x) into U(V(x)-q dr.x). This points out that the condi­
tions obtained by Mate, Nevai, and Totik are necessary not only for the
mean convergence but also for the weak convergence.

Remark 3. Let us prove that Mate-Nevai-Totik conditions are not
sufficient for weak convergence. Consider the Fourier-Legendre expansion
(dr.x = dx), p = 4, and take

I (1+ X)I- S

/

8

1 (1 X)I- S

/

8

U(x)= log -4- log -4- ,

I (1+ X)\-3/81 (1 X)!- 3/8V(x)= log -4- log -4- .

It is immediate that U and V satisfy (1.6) in Corollary 1. In order to prove
the remaining conditions, (1.7) and (1.8), we will show that the weights U
and V satisfy even stronger ones, that is

((1_X2)b U(X)4b, (1_X2)b V(X)4b)EA 4(-1, 1) forsome(j>1, (1.9)

((l-X2)-1 U(X)4, (1_X2)-1 V(X)4)EA 4( -1,1), (1.10)
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where A p ( - 1, 1) stands for the Muckenhoupt A p classes [9, 14],
(u, v)EAp( -1,1),1 <P< 00, if

tu(x) dx (tV(X)-I/(p-l) dxy-I ~ CIII p

227

for every interval Ie [ - 1, 1J, and III denotes the Lebesgue measure of the
interval 1. The weight w belongs to Al if Mw(x) ~ Cw(x) a.e., where M
denotes the Hardy-Littlewood function.

In order to prove (1.9), by using symmetry and change of variable, it
suffices to show that

Let

It is known that WI E A 1 and it is not difficult to prove that W2 E A I' Thus,
WE A 4 by using the factorization theorem for A p weights [6]. Now, (1.9)
follows from [15, Theorem 2J and it implies that the Hilbert transform H
is bounded from LP(v) into LP(u), which will be used later.

On the other hand, if u(x) = x- 1110g xl b and v(x) = x-Illog xl B
, it can be

shown that (u, v)EAp(O, 1/2) if and only if -b> 1 and b+ 1~B. Then
(1.10) follows obviously.

If Pn(x) stands for the Legendre orthonormal polynomials, the partial
sum operator can be decomposed [17J as

f, ) ( )II Pn(t) - Pn+2(t) {'( ) d
Sn(,X =rxnPn+l x J\t t

-I x-t

- PnPn+l(X)r Pn+ l(t)f(t) dt,
-1

where rxn and Pn are bounded and

We now try to estimate the three summands of Eq. (1.11). We begin by
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estimating the last term using Holder's inequality, the first part of (1.12),
and (1.10). We have

Therefore

We now estimate the middle term using (1.9) and (1.12):

f1I(Pn+2(X)- Pn(x)) fl Pn+~~:(t) df U(X)4 dx

~ C f
l

IH(Pn+ If, x)1 4 (1 - x2) U(X)4 dx

~ Cd~l IPn+ l(x)f(xW (1- x2) V(X)4 dx ~ C2 1IfVII:.

Finally, we will prove that the first term is not weakly bounded. The proof
is by contradiction. Let us assume that there exists a constant C, indepen­
dent of n and fE L 4(V4

), such that

f U(X)4 dx~ Cy- 4 1IfVII:.
IPn+l(X)IIH((Pn- Pn-2)f, x)1 > y

Then it will be enough to construct a sequence of functions {fn(t)} such
that the constant appearing in the above inequality grows with n. A slight
modification of the argument used by Chanillo proves that C?: (log n )3/2.

Therefore, the partial sum operator is not of weak type (4, 4).

SECTION 2

Let Sn denote the nth partial sum of the Fourier-Jacobi expansion
with respect to w(x) = (1 - x)~ (1 + x)fJ, with a?: f3 and a> -1/2. Then
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the interval of mean convergence is given by 4(IX + 1)/(2IX + 3)<
P < 4(IX + 1 )/(2IX + 1). Theorem 1 works to prove that Sn is not of weak
type on LP(w) for P = 4( IX + 1)/(2IX + 3), since (1.5) is not satisfied. But it is
not useful to show that Sn is not of weak type for P = 4(IX + 1)/(2Cl + 1). It
leads us to make use of other arguments.

THEOREM 2. Let r = 4( IX + 1)/(2IX + 1). Then there exists no constant C,
independent of nand f E L r

( w), such that

(2.1)

Proof In what follows assume supp(f)c [0,1]. Let Pn(x) denote the
orthonormal polynomials with respect to w(x) and qn(x) the orthonormal
polynomials with respect to w(x) (1-x2). Moreover, if (2.1) is true,
the same happens if the left integral is only taken over the set
{x E (0, 1), ISnCr, x) I> y }. Then, we will suppose all integrals are restricted
by the condition x E (0, 1).

Pollard [18] proved that in

Sn(f, x) =r f(t) Kn(x, t) w(t) dt
-I

the kernel Kn(x, t) can be decomposed in the form

where rnand snare bounded and

T1(n, x, t) = Pn(x) Pn(t)

T2(n, x, t)= (1- t2/ n(x) qn_l(t)
x-t

( ) T ( ) (1
2)Pn(t) qn_I(X)

T3 n, x, t = 2 n, t, x = - x .
t-x

As IX;): -1/2, from [23, p.169], if XE [0,1], we have the estimates

IPn(x)1 ~ C(1_X)-ex/2-1/4,

Iqn(x)1 ~ C(1- X)-ex/2-3/4.

(2.3 )

(2.4)

(2.5)

(2.6)

(2.7)

Let

WJf, x) = Wi,nU; x) =r f(t) T;(n, x, t) w(t) dt
-1

(i= 1, 2,3).
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We try to estimate the three terms

f w(x) dx
IW,(f, x)1 > y

(i= 1, 2, J).

(i = 1) By using (2.6) and Holder's inequality, we have

W 1(f, x)1 = IPn(x) (f(t) Pn(t) w(t) dtl

~ C(1 - x) -a/2-1/4 (( If(tW w(t) dt )l/P

(

1 )l/q

X fa (1 - t )q( - a/2 - 1/4) w( t) dt

= C1(I-X)-a/2-1/41Ifll p,w

if q(- al2 - 1/4) + a > - 1. Applying this to P = r we get

which shows that W1 is weakly bounded.
(i = 3) Let H denote the Hilbert transform. It is well known that H is

bounded from LP(u) into LP(u) if and only if the weight u belongs to A p

[9]. By using (2.6) and (2.7), we get

( IW 3(f, xW w(x) dx

~ C ( IH(f(t) Pn(t) w(t), xW (1- x)(l/4-a/2)p+a dx. (2.8)

Recalling that (l-x)(l/4-a/2)p+a E A p(0,1) iff -1<(1/4-a/2)p+lX<
P -1, [21], and it is verified for P = r; then (2.8) and (2.6) yield

( IW3(f, x)lr w(x) dx

~ C I1
If(x) Pn(x) w(x)lr (1- X)(l/4- a/2) r+a dx ~ C 1 Ilfll ~ w

a '

and therefore W3 is strongly bounded.
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(i = 2) We shall prove that there is no constant C, independent of nand
f, such that

f w(x) dx~ cy-r Ilfll~ W (2.9)
Ipo(x) HU(l) qo-,(t) (1- l2) W(l), x)1 > y ,

The proof is by contradiction, constructing a sequence of functions
Urn,nU)} such that the constant C appearing in the previous inequality
grows with m. In order to get it we try to remove the term (x - t) -1 in
Hilbert transform. We need sharper forms of (2.6) and (2.7).

Because of [23, Theorem 8.21.13], if N= n + (a + f3 + 1)/2 and
Y= - (a + 1/2) n12, we have

Pn(cos 8) = (2"+ Pn )-1/2 (sin(BI2)) -" -1/2 (cos(812)) - P-1/2

x [cos(N8 + y) + (n sin 8)-10(1)],

where cln ~ 8 ~ n - cln, c being a fixed positive number.
We will restrict our attention to 8 ~ nl2 and choose M large enough and

such that M - al2 is a positive integer. If Mnln ~ 8 ~ (M + 118) nln, we
have

( a+f3+1)( l)nN8 + y~ n + 2 M + 8" -;;

-(a + ~) !: -----+ (M -~) n - !:2 2 n->oo 2 8

and

( a+P+ 1) Mn ( 1) n ( a) nN8 + y >- n + - - a + - - -----+ M - - n - -.
~ 2 n 2 2 n->oo 2 4

Hence, for every 8 > 0, there exists no such that

(M-~)n- ~-8~N8+Y~(M-~) n-·i +8,

Therefore Icos (N8 + y)1 is bounded below by a positive constant for n
large enough, and the same happens to Icos(N8+y)I-I(nsin8)-1 0(1)1·
Thenpn(cos8)~C(sin(812))-"-1/2, and taking x=cos8 we get

IPn(x)1 ~ C(1 - x 2)-,,/2 - 1/4 ~ C1(1 - x) -,,/2 -1/4 ~ C2n e<+ 1/2 (2.10)

for n ~ no and XE [cos(M + 1/8) nln, cos Mnln] = In·
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sgn qn-l(t)
fm,n(t) = (1- t)"/2+ 1/4 if O~ t~cos c~n} m<n

(2.11 )

and fm, n(t) = 0 elsewhere.
Now we are going to estimate the left side in (2.9). If x E In and

t E supp(fm,n) then 0 < x - t < 1 - t. With the aid of Lemma 2, there exists
a subsequence of n's for which

IH(fm,n(t) qn-l(t) (1 - t)"+ 1 (1 + t)f3+ 1, x)1

_lfCOS (2Mn/m) Iqn-l(t)1 (1- t)"+1 (1 + t)f3+ 1 1>-
- ),,/2 +1/4 ( ) dt r Clog m.o (l-t x-t

Thus, this and (2.10) imply

IPn(x)IIH(fm,n(t) qn-l(t) (1- t)"+ 1 (1 + t)f3+ 1, x)1

~ Cn" + 1/2 log m, (2.12)

On the other hand, it is easy to check that

f
l fCOS(2Mn/m)

Ifm,n(tW (1- t)" (1 + t)f3 dt ~ C (1- t)-1 dt ~ C1log m. (2.13)
o 0

Finally, assume (2.9). By using (2.13) it follows that

y-r log n ~ cy-r ( Ifm,n(tW w(t) dt

~ C1 f w(x) dx. (2.14)
IPn(x) HUm,n(t) qn-I(t) (1- (2) w(t), x)1 > y

Choose y = Cn"+ 1/2 log m. As IInl = O(n- 2), using (2.12) and (2.14) we
have

Cn -2 - 2"(log m) - (2" +3)/(2" +1)

~ C 1 f (1- x)" (1 + x)f3 dx ~ C21Ini n-2" ~ C3 n- 2- 2",
In

i.e., (log m) - (2" +3)/(2" + 1) ~ C, which is absurd.

SECTION 3

The aim of this part is to examine the restricted weak behaviour of
the nth partial sum of the Fourier-Jacobi expansion. Assume that
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w(x) = (1- x)'" (1 + x)f3 with a;;: f3;;: -1/2 and a> -1/2, and so the inter­
val of mean convergence turns out to be 4(a + 1)j(2a + 3) < p<
4(a + 1)/(2a + 1). We need some notations to establish our result. The
Lebesgue measure of any set Ec ( - 1, 1) will be denoted lEI, and NE(x)
will as usual denote the characteristic function of the set E. The reader is
refered to [8J or [22J for notations and results about Lorentz spaces.

THEOREM 3. Let p=4(a+1)/(2a+1) or p=4(a+1)/(2a+3). Then
there exists a constant C, independent of nand E c ( - 1, 1), such that

f w(x) dx ~ Cy-P f w(x) dx.
ISn(NE, xli> y E

(3.1 )X E ( -1, 1).

Proof By standard duality arguments it is enough to prove this for
p = 4(a + 1)/(2a + 1). Since f3;;: - 1/2, we have estimates analogous to (2.6)
and (2.7) in the interval ( - 1, 0),

IPn(x)1 ~ C(1_X2)-1/4 W(X)-1/2,

Iqn(x)1 ~ C(1- X2)-3/4 W(X)-1/2,

We proceed as in Section 2 by making the same decomposition for
kernel in Sn(N E , x). We can see that WI and W3 are weakly bounded.
Therefore we only need to prove that

for every measurable set E c ( - 1, 1). By (3.1),

\(1 NE(t) T2(n, x, t) w(t) dtl

~ C(1- X2)-1/4 w(x) -1/2 IH(NE(t) qn-l (t) (1 - t2) w(t), x)l.

Therefore, if we denote

U= U(E,y, n)

={xE(-1,1):(1 X 2 )-1/4

x W(X)-1/2IH(N E(t) qn-l(t) (1- t2) w(t), x)1 > y}

it suffices to prove

ypf w(x)dx~Cf w(x)dx.
U E
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We can write a similar proof to that of [5]. Decompose E = E 1 U E 2 ,

E 1 =En[O,I), E 2 =En(-I,O), and let U 1 =U(Eu Y,n), U2 =
U(E2 , y, n), Since in Ixl:::;; 3/4 both (1- x) and (1 + x) have lower and
upper positive bounds and since the Hilbert transform is a bounded
operator in LP(dx), 1<p< 00 (M. Riesz's Theorem [20]), the following
inequality holds:

yPJ w(x)dx:::;;CJ w(x)dx.
Un {Ixl ,;; 3/4} E

Hence, we must show that

yP f W(X) dx:::;; C J W(X) dx,
Vi n {3/4 < Ixl < 1} E

i= 1, 2. (3.2)

We only prove (3.2) for i= 1 since the estimates for i=2 are made in
similar way. We begin considering x E ( - 1, - 3/4). As E 1 C [0, 1]" the
term (x - t) -1 in the Hilbert transform can be dropped. By using (3.1) and
Holder's inequality for p = 4(a + 1)/(2a + 1) and q = 4(a + 1)/(2a + 3), we
easily get

Then, if a = /3, by using (3.1) again, we have

yP I w(x)dx:::;;CyP I (l+xtdx,
Vtn{-1<x<-3/4} B

where B is the set

Then

yP f w(x)dx:::;;C f w(x)dx
VI n { - 1 < x < - 3/4} El

is obtained straightforwardly.
The previous inequality is also true when /3 < a and it can be easily

shown, taking into account that the weak norm is smaller than the strong
norm.
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Consequently (3.2) will be proved if we show

ypJ w(x)dx:(;CJ w(x)dx.
VI" {3/4<x< I} E

Let us define the sets

A=U1 n{3/4<x<I},

h= {XE(O, 1):2- k
-

1 :(;1-x<2- k
},

Ak=A nh, k;;:,2.

We have

235

(3.3 )

(1j

Uh = (3/4, 1).
k=2

Let us also set for k ;;:, 2

E~~)=El n [0, 1_2- k + 1)

E~~)=El n [1-2- k +1, 1_2-k
-

2
)

Ei~)=Eln [1_2- k - 2 , 1).

For every k;;:, 2, EikJ, (m = 1, 2, 3) are non-intersecting sets whose union is
E l' If we denote by ~~) the characteristic function of the set E \'f!,
(m = 1, 2, 3, k;;:, 2), then

Again for k;;:, 2 and m = 1, 2, 3, let

A~m) = {xEh: I(l-x 2 ) -1/4 W (X)-1/2 H(~~)(t)qn_1(t) (1- t2 )w(t), x)j > y/3}.

A C L02 (A~l) U AP»] U L02 A~2)J

Therefore, in order to prove (3.3), it is enough to show that

and

GC f rL yP w(x)dx~CJ w(x)dx.
k=2 A21 E

(3.4)

(3.5)
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We start with Ail). Since xElk and tEE~~), then I-t~x-t~

2 -1(1 - t). By using this, (3.1), and (0: + 1)/q - (20: + 3)/4;::;; 0, we obtain

1(1 - x2) -1/4 w(x) -1/2 H(N\k)(t) qn -I (t) (1 - t2) w(t), x)1

;::;; C(1 - x )-a/2-1/4rI N\k)(t) (1 - t) -a/2- 3/4 w(t) dt

;::;; C(1-x)-(a+I)/p r N\k)(t) (1- t)-(a+I)/q w(t) dt. (3.6)
-1

By HOlder's inequality for Lorentz spaces we have

r N\k)(t) (1- t)-(a+l)/q w(t) dt
-I

= II N\k)(t) (1 - t) -(a + l)jqll (1. I), W

;::;; CIlN\k)(t)ll(p.l),w 11(1- t)-(a+ l)/qll(q, oo),w' (3.7)

Also

Finally, we get

IIN\k)(t)11 (p, I),w;::;; CIIN\k)(t)11 (p, I),w

( )
1/P ( )I/P

=C t\1
J
w(x)dx ;::;;C t w(x)dx . (3.8)

11(I-t)-(a+I)/qll(q,oo),w=supyq f w(t)dt<oo. (3.9)
y>O 1(1- I)-(Hl)/ql > y

Using (3.6), (3.7), (3.8), and (3.9) in turn we obtain for xEAil )

1(1 - X2) -1/4 W(X) -1/2 H(N\k)(t) qn-l(t) (1 - t2) w(t), x)1

( )

1/P
;::;;C(I-x)-(a+l)/p Lw(x)dx . (3.10)

This argument can be made analogously for Ail) (k ~ 2) and we have the
same estimates. Thus

and as the same is true for Ur~2(Ail) u Ai3 )), (3.4) follows.
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Let us see now what happens to Ai2l, k;;; 2. As x E lk we can remove the
term (1 + x) -f3/2~ 1/4, and so

Ai2) C {x:2 -k-1 < 1- x < 2-\ W(X)-1/p

x IH(N~k)( t) qn -1 (t) (1 - t2 ) w(t), x)1 > C2 -k(~/2+ 1/4) + ",k/py }.

Then, by using (3.1) and M. Riesz's Theorem and the location of E 11), we
obtain

yP f w(x) dx ~ C f w(x) dx.
A21 Ei~)

As x may belong to at most three intervals of the form {I - 2 -k+ I ~

X < 1 - 2 -k - 2} and the A i2l are non-overlapping intervals, we have

~ C ~ f w(x) dx ~Clf w(x) dx,
k=2 EW E

and the theorem is shown.

Remarks. (1) As the referee has pointed out to us, recently L. Colzani,
S. Giulini, and G. Travaglini [25] have considered weak type boundedness
of polyhedral partial sum operators on certain compact Lie groups,
proving that weak type fails in the lower endpoint. As a consequence,
results for some Jacobi-Fourier series can be obtained from their work.

(2) We also have a proof of Theorem 3 when either a or f3 is less
than - 1/2. It can be done by modifying the proof slightly and using
uniform estimates of Jacobi polynomials (see [11]).
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